|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В наборе –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5 замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились. а) Докажите, что ограниченная фигура не может иметь более одного центра симметрии. б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии. в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M? Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 519]
M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что ∠APM = ∠DPM.
В треугольнике ABC биссектриса AD делит сторону BC в отношении BD : DC = 2 : 1. В каком отношении медиана CE делит эту биссектрису?
Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение площади квадрата к площади треугольника.
В треугольнике ABC с прямым углом C проведены высота CD, и биссектриса CF, DK и DL – биссектрисы треугольников BDC и ADC.
На сторонах AB, AC и BC треугольника ABC взяли точки K, L и M соответственно так, что ∠A = ∠KLM = ∠C.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 519] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|