|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Ортогональные проекции треугольника ABC на две взаимно перпендикулярные плоскости являются правильными треугольниками со сторонами 1. Найдите периметр треугольника ABC , если известно, что AB = На стороне AB треугольника ABC дана точка P. Проведите через точку P прямую (отличную от AB), пересекающую лучи CA и CB в таких точках M и N, что AM = BN. Дан неравнобедренный остроугольный треугольник ABC, BB1 – его симедиана, луч BB1 вторично пересекает описанную окружность Ω в точке L. Пусть HA, HB, HC – основания высот треугольника ABC, а луч BHB вторично пересекает Ω в точке T. Докажите, что точки HA, HC, T, L лежат на одной окружности. Точки E, F, M расположены соответственно на сторонах AB, BC, AC треугольника ABC. Отрезок AE составляет одну треть стороны AB, отрезок BF составляет одну шестую стороны BC, отрезок AM составляет две пятых стороны AC. Найдите отношение площади треугольника EFM к площади треугольника ABC.
Произведение двух натуральных чисел, каждое из которых не делится нацело на 10, равно 1000. Найдите их сумму. |
Страница: 1 2 3 >> [Всего задач: 11]
Три равные окружности пересекаются в одной точке. Докажите, что треугольник с вершинами в остальных точках попарного пересечения окружностей равен треугольнику с вершинами в центрах окружностей.
Даны три равных окружности, пересекающихся в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Докажите, что полученные три прямые пересекаются в одной точке.
а) H — точка пересечения высот треугольника ABC; б) радиус описанной окружности треугольника ABC тоже равен R.
Страница: 1 2 3 >> [Всего задач: 11] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|