ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 142]      



Задача 52718

Темы:   [ Касающиеся окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В равносторонний треугольник вписана окружность. Этой окружности и сторон треугольника касаются три малые окружности. Найдите сторону треугольника, если радиус малой окружности равен r.

Прислать комментарий     Решение


Задача 52722

Темы:   [ Признаки и свойства касательной ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На окружности радиуса r выбраны три точки таким образом, что окружность оказалась разделенной на три дуги, которые относятся как 3:4:5. В точках деления к окружности проведены касательные. Найдите площадь треугольника, образованного этими касательными.

Прислать комментарий     Решение


Задача 53174

Темы:   [ Вписанные и описанные окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Формулы для площади треугольника ]
Сложность: 3+
Классы: 8,9

Площадь параллелограмма ABCD равна  80.  Расстояние от точки Q пересечения диагоналей параллелограмма ABCD до центра вписанной окружности треугольника AQB равно 2. Угол AQD равен 60°, а угол BAD тупой. Найдите диагональ AC.

Прислать комментарий     Решение

Задача 53466

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Высота прямоугольного треугольника, опущенная на гипотенузу равна 1, один из острых углов равен 15°. Найдите гипотенузу.

Прислать комментарий     Решение

Задача 53537

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Симметрия помогает решить задачу ]
[ Против большей стороны лежит больший угол ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол A прямой, стороны  AB = 1  и  BC = 2,  BL – биссектриса, G – точка пересечения медиан. Что больше, BL или BG?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 142]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .