ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 142]      



Задача 108082

Темы:   [ Окружность, вписанная в угол ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.

Прислать комментарий     Решение

Задача 108516

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Пересекающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол B прямой, точка M лежит на стороне AC, причём  AM : MC = 1 : 3, ∠ABM = π/6BM = 6.
Найдите угол BAC и расстояние между центрами описанных окружностей треугольников BCM и BAM.

Прислать комментарий     Решение

Задача 108517

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Пересекающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол B прямой, точка M лежит на стороне AC, причём  AM : MC = : 4.  Величина угла ABM равна  π/3BM = 8.
Найдите величину угла BAC и расстояние между центрами описанных окружностей треугольников BCM и BAM.

Прислать комментарий     Решение

Задача 67420

Темы:   [ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9,10,11

Пять равносторонних треугольников расположены так, как показано на рисунке ниже. Три больших треугольника равны между собой и два маленьких тоже равны между собой. Найдите углы треугольника $ABC$.

Прислать комментарий     Решение

Задача 53685

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 4-
Классы: 8,9

Найдите sin 15o и tg75o.

Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 142]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .