|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи При каких натуральных $n$ найдутся $n$ последовательных натуральных чисел, произведение которых равно сумме (может быть, других) $n$ последовательных натуральных чисел? Дана прямоугольная трапеция ABCD, в которой ∠C = ∠B = 90°. На стороне AD как на диаметре построена окружность, которая пересекает сторону BC в точках M и N. Докажите, что BM·MC = AB·CD. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 119]
Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений (x – a)(x – b) = x – c, (x – b)(x – c) = x – a,
Для квадратного трёхчлена f(x) и некоторых действительных чисел l, t и v выполнены равенства: f(l) = t + v, f(t) = l + v, f(v) = l + t.
Квадратный трёхчлен f(x) имеет два различных корня. Оказалось, что для любых чисел a и b верно неравенство f(a² + b²) ≥ f(2ab).
Числа a и b таковы, что каждый из двух квадратных трёхчленов x² + ax + b и x² + bx + a имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.
Даны три квадратных трёхчлена: x² + b1x + c1, x² + b2x + c2 и x² + ½ (b1 + b2)x + ½ (c1 + c2). Известно, что их сумма имеет корни (возможно, два совпадающих). Докажите, что хотя бы у двух из этих трёхчленов также есть корни (возможно, два совпадающих).
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 119] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|