Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 29]
Задача
65669
(#5)
|
|
Сложность: 4 Классы: 7,8,9
|
Дан выпуклый пятиугольник ABCDE, все стороны которого равны между собой. Известно, что угол A равен 120°, угол C равен 135°, а угол D равен n°.
Найдите все возможные целые значения n.
Задача
65675
(#5)
|
|
Сложность: 4 Классы: 8,9,10
|
Существует ли 2016-значное число, перестановкой цифр которого можно получить 2016 разных 2016-значных полных квадратов?
Задача
65681
(#5)
|
|
Сложность: 4+ Классы: 9,10,11
|
В куб с ребром 1 поместили 8 непересекающихся шаров (возможно, разного размера). Может ли сумма диаметров этих шаров быть больше 4?
Задача
65686
(#5)
|
|
Сложность: 4 Классы: 10,11
|
Можно ли четырьмя плоскостями разрезать куб с ребром 1 на части так, чтобы для каждой из частей расстояние между любыми двумя её точками было:
а) меньше 4/5;
б) меньше 4/7?
Предполагается, что все плоскости проводятся одновременно, куб и его части не двигаются.
Задача
65692
(#5)
|
|
Сложность: 4+ Классы: 10,11
|
Про приведённый многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 с действительными коэффициентами известно, что при некотором натуральном
m ≥ 2 многочлен
имеет действительные корни, причём только положительные. Обязательно ли сам многочлен P(x) имеет действительные корни, причём только положительные?
Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 29]