ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 56]      



Задача 110035  (#00.4.10.5)

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Тригонометрические неравенства ]
[ Неравенства с модулями ]
Сложность: 4+
Классы: 10,11

Автор: Знак Е.

Существует ли функция f(x) , определенная при всех x и для всех x,y удовлетворяющая неравенству

|f(x+y)+ sin x+ sin y|<2?

Прислать комментарий     Решение

Задача 110036  (#00.4.10.6)

Темы:   [ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

По данному натуральному числу a0 строится последовательность {an} следующим образом     если an нечётно, и a0/2, если an чётно. Докажите, что при любом нечётном  a0 > 5  в последовательности {an} встретятся сколь угодно большие числа.

Прислать комментарий     Решение

Задача 108248  (#00.4.10.7)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 5-
Классы: 8,9,10

В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный.

Прислать комментарий     Решение

Задача 110038  (#00.4.10.8)

Темы:   [ Связность и разложение на связные компоненты ]
[ Обход графов ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 5-
Классы: 9,10,11

В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на  2N + 2  республики так, чтобы никакие два города из одной республики не были соединены дорогой.

Прислать комментарий     Решение

Задача 110024  (#00.4.11.1)

Темы:   [ Многочлены (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Докажите, что можно выбрать такие различные действительные числа  a1, a2, ..., a10,  что уравнение
(x – a1)(x – a2)...(x – a10) = (x + a1)(x + a2)...(x + a10)  будет иметь ровно пять различных действительных корней.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .