ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 105114

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9,10

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Прислать комментарий     Решение

Задача 105115

Темы:   [ Геометрическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9,10

Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
Верно ли, что её двадцатый член также является натуральным числом?

Прислать комментарий     Решение

Задача 105117

Темы:   [ Целочисленные и целозначные многочлены ]
[ Простые числа и их свойства ]
[ Итерации ]
Сложность: 4-
Классы: 8,9,10

Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом p является простым числом.

Прислать комментарий     Решение

Задача 108129

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4+
Классы: 8,9

В неравнобедреном треугольнике ABC точка I – центр вписанной окружности, I' – центр окружности, касающейся стороны AB и продолжений сторон CB и CA; L и L' – точки, в которых сторона AB касается этих окружностей.
Докажите, что прямые IL', I'L и высота CH треугольника ABC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 105119

Темы:   [ Теория алгоритмов (прочее) ]
[ Ориентированные графы ]
[ Обход графов ]
[ Процессы и операции ]
Сложность: 5-
Классы: 9,10,11

По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
  а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
  б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .