ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 98400  (#1)

Темы:   [ Формула включения-исключения ]
[ Куб ]
[ Подсчет двумя способами ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Куб со стороной 20 разбит на 8000 единичных кубиков, и в каждом кубике записано число. Известно, что в каждом столбике из 20 кубиков, параллельном ребру куба, сумма чисел равна 1 (рассматриваются столбики всех трёх направлений). В некотором кубике записано число 10. Через этот кубик проходит три слоя 1×20×20, параллельных граням куба. Найдите сумму всех чисел вне этих слоёв.

Прислать комментарий     Решение

Задача 98401  (#2)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Квадрат целого числа имеет вид ...09 (оканчивается цифрами 0 и 9). Докажите, что третья справа цифра – чётная.

Прислать комментарий     Решение

Задача 108161  (#3)

Темы:   [ Признаки и свойства параллелограмма ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что  ∠AC'B' = ∠B'A'C,  ∠CB'A' = ∠A'C'B,  ∠BA'C' = ∠C'B'A.  Докажите, что точки A', B', C' – середины сторон треугольника ABC.

Прислать комментарий     Решение

Задача 98403  (#4)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 7,8,9

12 кандидатов в мэры рассказывали о себе. Через некоторое время один сказал: "До меня соврали один раз". Другой сказал: "А теперь – дважды". – "А теперь – трижды", – сказал третий, и так далее до 12-го, который сказал: "А теперь соврали 12 раз". Тут ведущий прервал дискуссию. Оказалось, что по крайней мере один кандидат правильно подсчитал, сколько раз соврали до него. Так сколько же раз всего соврали кандидаты?

Прислать комментарий     Решение

Задача 98404  (#5)

Темы:   [ Раскраски ]
[ НОД и НОК. Взаимная простота ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 4-
Классы: 8,9,10

Автор: Герко А.А.

Назовём крокодилом шахматную фигуру, ход которой заключается в прыжке на m клеток по вертикали или по горизонтали, и потом на n клеток в перпендикулярном направлении. Докажите что для любых m и n можно так раскрасить бесконечную клетчатую доску в два цвета (для каждых конкретных m и n своя раскраска), что всегда две клетки, соединённые одним ходом крокодила, будут покрашены в разные цвета.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .