ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]      



Задача 108079

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Элементарные (основные) построения циркулем и линейкой ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям:  l || BC,  l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.

Прислать комментарий     Решение

Задача 108080

Темы:   [ Пересекающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. К ним проведена общая касательная, которая касается первой окружности в точке C, а второй – в точке D. Пусть B – ближайшая к прямой CD точка пересечения окружностей. Прямая CB пересекла вторую окружность второй раз в точке E. Докажите, что AD – биссектриса угла CAE.

Прислать комментарий     Решение

Задача 108081

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9

AB и CD – отрезки, лежащие на двух сторонах угла (O – вершина угла, A лежит между O и B, C – между O и D). Через середины отрезков AD и BC проведена прямая, пересекающая стороны угла в точках M и N (M, A и B лежат на одной стороне угла; N, C и D – на другой). Докажите, что
OM : ON = AB : CD.

Прислать комментарий     Решение

Задача 108082

Темы:   [ Окружность, вписанная в угол ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.

Прислать комментарий     Решение

Задача 108089

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

a и b – две данные стороны треугольника.
  Как подобрать третью сторону c так, чтобы точки касания вписанной и вневписанной окружностей с этой стороной делили её на три равных отрезка?
  При каких a и b такая сторона существует?
(Рассматривается вневписанная окружность, касающаяся стороны c и продолжений сторон a и b.)

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .