ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 98357  (#1)

Темы:   [ Задачи на движение ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

По неподвижному эскалатору человек спускается быстрее, чем поднимается. Что быстрее: спуститься и подняться по поднимающемуся эскалатору или спуститься и подняться по спускающемуся эскалатору? (Предполагается, что все скорости, о которых идет речь, постоянны, причём скорости эскалатора при движении вверх и вниз одинаковы, а скорость человека относительно эскалатора всегда больше скорости эскалатора.)

Прислать комментарий     Решение

Задача 98358  (#2)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3-
Классы: 7,8,9

Докажите, что уравнение  x² + y² – z² = 1997  имеет бесконечно много решений в целых числах.

Прислать комментарий     Решение

Задача 55721  (#3)

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Докажите, что  AK = DM + BK.

Прислать комментарий     Решение

Задача 98360  (#4)

Темы:   [ Плоскость, разрезанная прямыми ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 6,7,8

Автор: Вялый М.Н.

а) Каким наименьшим числом прямых можно разрезать все клетки шахматной доски 3×3? (Чтобы клетка была разрезана, прямая должна проходить через внутреннюю точку этой клетки.)
б) Та же задача для доски 4×4.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .