|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Предположим, что имеется набор функций f1(x), ..., fn(x), определённых на отрезке [a, b]. Докажите неравенство: Мудрецам $A, B, C, D$ сообщили, что числа 1, 2, ..., 12 написаны по одному на 12 карточках и что эти карточки будут розданы им по три, причём каждый увидит лишь свои карточки. После раздачи мудрецы по очереди сказали следующее. Точки A, B, C, D, E, F лежат на одной окружности. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой (Паскаль). |
Страница: 1 [Всего задач: 4]
В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1.
Тремя бесконечными сериями равноотстоящих параллельных прямых плоскость
разбита на равносторонние треугольники со стороной 1.
На стене висят двое правильно идущих совершенно одинаковых часов. Одни показывают московское время, другие – местное. Минимальное расстояние между концами их часовых стрелок равно m, а максимальное – M. Найдите расстояние между центрами этих часов.
В нашем распоряжении имеются "кирпичи", имеющие форму, которая получается следующим образом: приклеиваем к одному единичному кубу по трём его граням, имеющим общую вершину, ещё три единичных куба, так что склеиваемые грани полностью совпадают. Можно ли сложить прямоугольный параллелепипед 11×12×13 из таких "кирпичей"?
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|