ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Доказать, что квадрат любого простого числа  p > 3  при делении на 12 даёт в остатке 1.

Вниз   Решение


Дан треугольник ABC. Требуется разрезать его на наименьшее число частей так, чтобы, перевернув эти части на другую сторону, из них можно было сложить тот же треугольник ABC.

ВверхВниз   Решение


Автор: Фольклор

Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство:   x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n.

 

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 98091  (#1)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство:   x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n.

 
Прислать комментарий     Решение

Задача 108049  (#2)

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Построение треугольников по различным точкам ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

На окружности даны точки K и L. Постройте такой треугольник ABC, что KL является его средней линией, параллельной AB, и при этом точка C и точка пересечения медиан треугольника ABC лежат на данной окружности.

Прислать комментарий     Решение

Задача 98093  (#3)

Темы:   [ Инварианты ]
[ Обыкновенные дроби ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин Д.

На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
a + b + ab.  Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.

Прислать комментарий     Решение

Задача 98094  (#4)

Темы:   [ Наглядная геометрия в пространстве ]
[ Необычные конструкции ]
[ Куб ]
Сложность: 3+
Классы: 8,9,10

  а) Можно ли расположить пять деревянных кубов в пространстве так, чтобы каждый имел общую часть грани с каждым? (Общая часть должна быть многоугольником.)
  б) Тот же вопрос про шесть кубов.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .