ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?

Вниз   Решение


На клетчатой плоскости отметили 40 клеток. Всегда ли найдётся клетчатый прямоугольник, содержащий ровно 20 отмеченных клеток?

ВверхВниз   Решение


Автор: Фомин Д.

Имеется n целых чисел  (n > 1).  Известно, что каждое из них отличается от произведения всех остальных на число, кратное n.
Докажите, что сумма квадратов этих чисел делится на n.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 98061

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7,8

Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.

Прислать комментарий     Решение

Задача 98084

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?

Прислать комментарий     Решение

Задача 98063

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
Сложность: 3
Классы: 6,7,8

Автор: Фомин С.В.

Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.

Прислать комментарий     Решение

Задача 98071

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматные доски и шахматные фигуры ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 7,8,9

В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

Прислать комментарий     Решение

Задача 98081

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Имеется n целых чисел  (n > 1).  Известно, что каждое из них отличается от произведения всех остальных на число, кратное n.
Докажите, что сумма квадратов этих чисел делится на n.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .