Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 38]
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что произведение 99 дробей где k = 2, 3, ..., 100, больше ⅔.
|
|
Сложность: 3 Классы: 7,8,9
|
Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство: x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n.
Каждая из трёх окружностей радиусов соответственно 1, r и r извне касается двух других.
При каких значениях r существует треугольник, описанный около этих окружностей?
В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.
|
|
Сложность: 3+ Классы: 6,7,8
|
Доска 100×100 разбита на 10000 единичных квадратиков. Один из них
вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски
покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так,
чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и
чтобы треугольники не налегали друг на друга и не свисали с доски?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 38]