|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что композиция двух поворотов на углы, в сумме не кратные 360o, является поворотом. В какой точке находится его центр и чему равен угол поворота? Исследуйте также случай, когда сумма углов поворотов кратна 360o. Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника. Имеется лабиринт, состоящий из n окружностей, касающихся прямой AB в точке M. Все окружности расположены по одну сторону от прямой, а их длины составляют геометрическую прогрессию со знаменателем 2. Два человека в разное время начали ходить по этому лабиринту. Их скорости одинаковы, а направления движения различны. Каждый из них проходит все окружности по порядку, и, пройдя наибольшую, снова идет в меньшую. Доказать, что они встретятся. 10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40]
Решить в натуральных числах уравнение:
10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток.
Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?
Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1.
Докажите, что при любом натуральном n
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|