ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

Вниз   Решение


На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

ВверхВниз   Решение


Автор: Фольклор

Найти число решений в натуральных числах уравнения   [x/10] = [x/11] + 1.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40]      



Задача 98024

Темы:   [ Уравнения в целых числах ]
[ Цепные (непрерывные) дроби ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2
Классы: 7,8,9

Решить в натуральных числах уравнение:  

Прислать комментарий     Решение

Задача 98031

Темы:   [ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.

Прислать комментарий     Решение

Задача 98021

Тема:   [ Четность и нечетность ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?

Прислать комментарий     Решение

Задача 98025

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Уравнения в целых числах ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Найти число решений в натуральных числах уравнения   [x/10] = [x/11] + 1.

Прислать комментарий     Решение

Задача 98041

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Формулы сокращенного умножения (прочее) ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Автор: Манукян С.

Докажите, что при любом натуральном n  

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .