|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например, 49/98 = 4/8. Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить". В квадрате ABCD на стороне AB взята точка P, на стороне BC — точка Q, на стороне CD — точка R, на стороне DA — S; оказалось, что фигура PQRS — прямоугольник. Доказать, что тогда прямоугольник PQRS — либо квадрат, либо обладает тем свойством, что его стороны параллельны диагоналям квадрата. Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40]
Решить в натуральных числах уравнение:
10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток.
Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?
Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1.
Докажите, что при любом натуральном n
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|