|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится? б) Тот же вопрос для четырёхзначных чисел. На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая. На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных? Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40]
Решить в натуральных числах уравнение:
10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток.
Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?
Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1.
Докажите, что при любом натуральном n
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|