ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В декартовой системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график показательной функции $y=3^x$. Затем ось $y$ и все отметки на оси $x$ стёрли. Остались лишь график функции и ось $x$ без масштаба и отметки 0. Каким образом с помощью циркуля и линейки можно восстановить ось $y$?

Вниз   Решение


Доказать, что при любой расстановке знаков "+" и "−" у нечётных степеней x выполнено неравенство
x2n ± x2n–1 + x2n–2 ± x2n–3 + ... + x4 ± x³ + x² ± x + 1 > ½  (x – произвольное действительное число, а n – натуральное).

ВверхВниз   Решение


Груз весом 13,5 т упакован в ящики так, что вес каждого ящика не превосходит 350 кг. Докажите, что этот груз можно перевезти на 11 полуторатонках. (Весом пустого ящика можно пренебречь.)

ВверхВниз   Решение


Какое наименьшее число карточек спортлото (6 из 49) надо купить, чтобы наверняка хоть в одной из них был угадан хоть один номер?

ВверхВниз   Решение


Автор: Мерков А.

В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 97786  (#1)

Тема:   [ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Мерков А.

В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные.

Прислать комментарий     Решение

Задача 97787  (#2)

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Несколько фишек двух цветов расположены в ряд (встречаются оба цвета). Известно, что фишки, между которыми 10 или 15 фишек, одинаковы.
Какое наибольшее число фишек может быть?

Прислать комментарий     Решение

Задача 97788  (#3)

Темы:   [ Произведения и факториалы ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Доказать, что уравнение  mn! = k!  имеет бесконечно много таких решений, что m, n и k – натуральные числа, большие единицы.

Прислать комментарий     Решение

Задача 35723  (#4)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 4
Классы: 9,10

а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины?

б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .