ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Точки $M$ и $N$ – середины сторон $AB$ и $AC$ треугольника $ABC$. Касательная $\ell$ к описанной окружности треугольника $ABC$ в точке $A$ пересекает прямую $BC$ в точке $K$. Докажите, что описанная окружность треугольника $MKN$ касается $\ell$.

Вниз   Решение


Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены).

ВверхВниз   Решение


Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)

ВверхВниз   Решение


На доске написаны числа 1, 2, 3, …, 20. Разрешается стереть любые два числа a и b и заменить их суммой ab + a + b. Какое число может получиться после 19 таких операций?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 88305  (#10.1)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске написаны числа
  а) 1, 2, 3, ..., 2003;
  б) 1, 2, 3, ..., 2005.
Разрешается стереть два любых числа и вместо них написать их разность. Можно ли добиться того, чтобы все числа стали нулями?

Прислать комментарий     Решение

Задача 88306  (#10.2)

Темы:   [ Инварианты ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске написаны числа 1, 2, 3, …, 20. Разрешается стереть любые два числа a и b и заменить их суммой ab + a + b. Какое число может получиться после 19 таких операций?
Прислать комментарий     Решение


Задача 88307  (#10.3)

Темы:   [ Инварианты ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8

Набор чисел a, b, c каждую секунду заменяется на a + bc, b + ca, c + ab. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003.
Прислать комментарий     Решение


Задача 88308  (#10.4)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 7,8,9

В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

Прислать комментарий     Решение

Задача 88309  (#10.5)

Темы:   [ Инварианты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3-
Классы: 7,8

Круг разделен на 6 секторов, в котором по часовой стрелке стоят числа 1,0,1,0,0,0. Можно прибавлять по единице к любым числам, стоящим в двух соседних секторах. Можно ли сделать все числа равными?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .