|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей? Алёша написал на доске пять целых чисел – коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, –5. Восстановите стёртое число. На плоскости дан угол, образованный двумя лучами a и b, и
некоторая точка M. Дана прямая l, перпендикулярная отрезку AB и пересекающая его. Для любой точки M прямой l строится такая точка N, что |
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.
Сумму цифр числа a обозначим через S(a). Доказать, что если S(a) = S(2a), то число a делится на 9.
У края биллиарда, имеющего форму правильного 2n-угольника, стоит шар. Как надо пустить шар от борта, чтобы он, отразившись последовательно от всех бортов, вернулся в ту же точку? (При отражении углы падения и отражения равны.) Доказать, что при этом длина пути шара не зависит от выбора начальной точки.
Страница: 1 2 3 4 5 6 >> [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|