|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC проведена биссектриса AD. Точки M и N являются проекциями вершин B и C на AD. Окружность с диаметром MN пересекает BC в точках X и Y. Докажите, что ∠BAX = ∠CAY. Высота, проведённая из вершины тупого угла равнобедренной трапеции, делит большее основание на части, равные a и b (a > b). Найдите среднюю линию трапеции.
Улитка ползёт с непостоянной скоростью. Несколько человек наблюдало за ней по очереди в течение 6 минут. Каждый начинал наблюдать раньше, чем кончал предыдущий, и наблюдал ровно 1 минуту. За эту минуту улитка проползла ровно 1 м. Доказать, что за все 6 минут улитка могла проползти самое большее 10 м. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
Дана окружность и точка A внутри неё.
Доказать, что существует бесконечно много натуральных чисел, не представимых в виде p + n2k ни при каких простых p и целых n и k.
Улитка ползёт с непостоянной скоростью. Несколько человек наблюдало за ней по очереди в течение 6 минут. Каждый начинал наблюдать раньше, чем кончал предыдущий, и наблюдал ровно 1 минуту. За эту минуту улитка проползла ровно 1 м. Доказать, что за все 6 минут улитка могла проползти самое большее 10 м.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|