|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Сумма восьми чисел равна 4/3. Оказалось, что сумма каждых семи чисел из этих восьми – положительна. Какое наименьшее целое значение может принимать наименьшее из данных чисел? Петя написал стозначное число $X$, в записи которого нет нулей. Пятидесятизначное число, образованное первыми пятьюдесятью цифрами числа $X$, Петя назвал головой числа $X$. Оказалось, что число $X$ без остатка делится на свою голову. Сколько нулей в записи частного? Сумму цифр числа a обозначим через S(a). Доказать, что если S(a) = S(2a), то число a делится на 9. Известна легенда, что в древней Лимонии любой претендент на должность визиря при шахе должен был выдержать следующее испытание. Ему дается доска размером M × M и некоторое количество шахматных фигур: ферзей, ладей, слонов, коней и королей. Претендент должен расставить их на доске таким образом, чтобы ни одна из фигур не била другие фигуры, и все фигуры были выставлены на доске. Если претендент выдерживал испытание, он назначался визирем, а если не выдерживал... то не назначался. Напишите программу, которая будет решать эту головоломку. Входные данные Первое число во входном файле задает размер доски M (2 ≤ M ≤ 12). Следующие 5 целых неотрицательных чисел K, Q, R, B, N задают соответственно количество королей, ферзей, ладей, слонов и коней, которые требуется расставить. Общее количество фигур не превосходит M2 . Фигуры подобраны так, что искомая расстановка существует. Выходные данные Вывести в выходной файл доску с расставленными фигурами в виде M строк по M символов в каждой. Пустые поля обозначаются символом . (точка), поля с королями – K, ферзями – Q, ладьями – R, слонами – B, конями – N. Пример входного файла 4 0 0 4 0 0 Пример выходного файла R... ..R. ...R .R.. M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке. |
Страница: 1 [Всего задач: 5]
Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)
В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?
Доказать: число делителей n не превосходит 2
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|