|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата образуют квадрат. В центре каждой клетки шахматной доски стоит по фишке. Фишки переставили так, что попарные расстояния между ними не уменьшились. Докажите, что в действительности попарные расстояния не изменились. Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ Докажите, что EF = FL. Сумма трёх положительных чисел равна их произведению. Докажите, что хотя бы два из них больше единицы. |
Страница: 1 2 >> [Всего задач: 6]
Сумма трёх положительных чисел равна их произведению. Докажите, что хотя бы два из них больше единицы.
В треугольнике ABC на продолжении медианы CM за точку C отметили точку K так, что AM = CK. Известно, что угол BMC равен 60°.
Васе задали на дом уравнение x² + p1x + q1 = 0, где p1 и q1 – целые числа. Он нашел его корни p2 и q2 и написал новое уравнение x² + p2x + q2 = 0. Повторив операцию еще трижды, Вася заметил, что он решал четыре квадратных уравнения и каждое имело два различных целых корня (если из двух возможных уравнений два различных корня имело ровно одно, то Вася всегда выбирал его, а если оба – любое). Однако, как ни старался Вася, у него не получилось составить пятое уравнение так, чтобы оно имело два различных вещественных корня, и Вася сильно расстроился. Какое уравнение Васе задали на дом?
Точка O – центр описанной окружности остроугольного треугольника ABC. Прямая, перпендикулярная стороне AC, пересекает сторону BC и прямую AB в точках Q и P соответственно. Докажите, что точки B, O и середины отрезков AP и CQ лежат на одной окружности.
Существует ли 2016-значное число, перестановкой цифр которого можно получить 2016 разных 2016-значных полных квадратов?
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|