|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны отрезки, длины которых равны a, b и c. Постройте отрезок длиной: a) ab/c; б) Дан выпуклый четырёхугольник ABCD и точка O внутри него.
Известно, что ∠AOB = ∠COD = 120°, AO = OB и CO = OD. Пусть K, L и M – середины отрезков AB, BC и CD соответственно. Докажите, что Даны два многочлена P(x) и Q(x) положительной степени, причём P(P(x)) ≡ Q(Q(x)) и P(P(P(x))) ≡ Q(Q(Q(x))). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Даны непересекающиеся окружность и прямая. Как с помощью циркуля и линейки построить квадрат, две соседние вершины которого лежат на данной окружности, а две другие вершины – на данной прямой (если известно, что такой квадрат существует)
Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.
Три окружности проходят через точку X. A, B, C – точки их пересечения, отличные от X. A' – вторая точка пересечения прямой AX и описанной окружности треугольника BCX. Точки B' и C' определяются аналогично. Докажите, что треугольники ABC', AB'C и A'BC подобны.
Даны два многочлена P(x) и Q(x) положительной степени, причём P(P(x)) ≡ Q(Q(x)) и P(P(P(x))) ≡ Q(Q(Q(x))).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|