ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

У Джона была полная корзина тремпончиков. Сначала он встретил Анну и дал ей половину своих тремпончиков и еще полтремпончика. Потом он встретил Банну и отдал ей половину оставшихся тремпончиков и еще полтремпончика. После того, как он встретил Ванну и снова отдал ей половину тремпончиков и еще полтремпончика, корзина опустела. Сколько тремпончиков было у Джона вначале? (Что такое тремпончики выяснить не удалось, так как к концу задачи их не осталось.)

Вниз   Решение


Петя приобрёл в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может по любым действительным числам x и y вычислить  xy + x + y + 1  и не имеет других операций. Петя хочет написать "программу" для вычисления многочлена  1 + x + x² + ... + x1982.  Под "программой" он понимает такую последовательность многочленов  f1(x), ..., fn(x),  что  f1(x) = x  и для любого  i = 2, ..., n   fi(x) – константа или
fi(x) = fj(xfk(x) + fk(x) + fj(x) + 1,  где  j < ik < i,  причём  fn(x) = 1 + x + ... + x1982.
  а) Помогите Пете написать "программу".
  б) Можно ли написать "программу", если калькулятор имеет только одну операцию  xy + x + y?

ВверхВниз   Решение


Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?

ВверхВниз   Решение


Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.

ВверхВниз   Решение


Автор: Ивлев Ф.

На основании AC равнобедренного треугольника ABC взяли произвольную точку X, а на боковых сторонах – точки P и Q так, что XPBQ – параллелограмм. Докажите, что точка Y, симметричная точке X относительно PQ, лежит на описанной окружности треугольника ABC.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 65160  (#1)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

а) Натуральные числа x, x² и x³ начинаются с одной и той же цифры. Обязательно ли эта цифра – единица?
б) Тот же вопрос для натуральных чисел x, x², x³, ..., x2015.

Прислать комментарий     Решение

Задача 65203  (#2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Композиции симметрий ]
Сложность: 4-
Классы: 9,10,11

Автор: Ивлев Ф.

На основании AC равнобедренного треугольника ABC взяли произвольную точку X, а на боковых сторонах – точки P и Q так, что XPBQ – параллелограмм. Докажите, что точка Y, симметричная точке X относительно PQ, лежит на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 65166  (#3)

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

а) В таблицу 2×n (где  n > 2)  вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.
б) В таблицу 100×100 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?

Прислать комментарий     Решение

Задача 65163  (#4)

Темы:   [ Многоугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

Внутри окружности расположен равносторонний N-угольник. Каждую его сторону продлевают в обе стороны до пересечения с окружностью, получая по два новых отрезка, расположенных вне многоугольника. Затем некоторые из 2N полученных отрезков красятся в красный цвет, а остальные – в синий цвет. Докажите, что можно раскрасить эти отрезки так, чтобы сумма длин красных отрезков равнялась сумме длин синих.

Прислать комментарий     Решение

Задача 65196  (#5)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Формулы сокращенного умножения (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10,11

Существуют ли такие два многочлена с целыми коэффициентами, что у каждого из них есть коэффициент, модуль которого больше 2015, но у произведения этих двух многочленов модули всех коэффициентов не превосходят 1?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .