ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Позиционная система счисления. Докажите, что при q $ \geqslant$ 2 каждое натуральное число n может быть единственным образом представлено в виде

n = akqk + ak - 1qk - 1 +...+ a1q + a0,

где 0 $ \leqslant$ a0,..., ak < q

Вниз   Решение


Средний возраст одиннадцати игроков футбольной команды – 22 года. Во время матча один из игроков получил травму и ушёл с поля. Средний возраст оставшихся на поле игроков стал равен 21 году. Сколько лет футболисту, получившему травму?

ВверхВниз   Решение


На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?

ВверхВниз   Решение


В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

ВверхВниз   Решение


Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 58296

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 8,9

Существует ли треугольник, у которого все высоты меньше 1 см, а площадь больше 1  м2?
Прислать комментарий     Решение


Задача 58297

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 8,9

В выпуклом четырехугольнике ABCD равны стороны AB и CD и углы A и C. Обязательно ли этот четырехугольник параллелограмм?
Прислать комментарий     Решение


Задача 58306

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?

Прислать комментарий     Решение

Задача 58298

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4+
Классы: 8,9

Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?
Прислать комментарий     Решение


Задача 58299

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9

Пусть n$ \ge$3. Существуют ли n точек, не лежащих на одной прямой, попарные расстояния между которыми иррациональны, а площади всех треугольников с вершинами в них рациональны?
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .