|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что PQ || BC. Несколько футбольных команд проводят турнир в один круг. Постройте треугольник ABC по a, ha и R. Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность. Даны окружность и две точки A и B внутри ее. Впишите в окружность прямоугольный треугольник так, чтобы его катеты проходили через данные точки. Постройте треугольник ABC, зная три точки A', B', C', симметричные центру O описанной окружности этого треугольника относительно сторон BC, CA, AB. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101]
б) Постройте треугольник ABC, зная три точки A', B', C', в которых высоты треугольника пересекают описанную окружность (оба треугольника остроугольные).
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|