ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дано N целых чисел. Требуется выбрать из них три таких числа,
произведение которых максимально.

Формат входных данных
Во входном файле записано сначала число N - количество чисел в
последовательности (3<=N<=100). Далее записана сама последовательность:
N целых чисел, по модулю не превышающих 1000.

Формат выходных данных
В выходной файл выведите три искомых числа в любом порядке.
Если существует несколько различных троек чисел, дающих
максимальное произведение, то выведите любую из них.

Пример входного файла
9
3 5 1 7 9 0 9 -3 10

Пример выходного файла
9 10 9

Пример входного файла
3
-5 -300 -12

Пример выходного файла
-5 -300 -12

Вниз   Решение


На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно обеих главных диагоналей.
Докажите, что одна из шашек стоит в центральной клетке.

ВверхВниз   Решение


Дан массив. Требуется вставить в него на место номер B элемент, равный C,
сдвинув все последующие элементы (включая элемент, стоящий на B-ом месте)
вправо.

Входные данные
Во входном файле записано сначала число N - количество элементов массива
(2<=N<=100), затем N чисел из диапазона Integer - элементы массива,
затем число B (1<=B<=N) и число C (из диапазона Integer).

Выходные данные
В выходной файл выведите N+1 число - элементы массива с вставленным элементом.

Примечание
Вы должны вставить элемент непосредственно в массив, а не сделать
вид при выводе данных, что у вас появился такой элемент. Также вы не
должны для этого заводить в программе дополнительный массив.

То есть ввод данных осуществляется следующим фрагментом:
read(fi,n);
for i:=1 to n do read(fi,a[i]);
read(fi,b,c);

А вывод - следующим:
for i:=1 to n+1 do write(fo,a[i],' ');

Необходимые фрагменты вы можете найти в файле P129.PAS


Пример входного файла
5
1 3 5 6 7
2 10

Пример выходного файла
1 10 3 5 6 7

Текст программы P129.PAS

const nmax=100;

var a:array[1..nmax] of integer;
    n:integer;
    i:integer;
    b,c:integer;
    fi,fo:text;

begin
assign(fi,'input.txt');
reset(fi);
assign(fo,'output.txt');
rewrite(fo);

read(fi,n);
for i:=1 to n do read(fi,a[i]);
read(fi,b,c);

{Вы должны писать здесь}

for i:=1 to n+1 do write(fo,a[i],' ');
close(fi);
close(fo);
end.

ВверхВниз   Решение


Семь девяток выписали подряд: 9 9 9 9 9 9 9. Поставьте между некоторыми из них знаки «+» или «−», чтобы получившееся выражение равнялось 1989.

ВверхВниз   Решение


Автор: Фольклор

На плоскости даны два равных многоугольника F и F'. Известно, что все вершины многоугольника F принадлежат F' (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?

ВверхВниз   Решение


Решите уравнение  (x + 1)63 + (x + 1)62(x – 1) + (x + 1)61(x – 1)² + ... + (x – 1)63 = 0.

ВверхВниз   Решение


Две окружности касаются в точке A. К ним проведена общая (внешняя) касательная, касающаяся окружностей в точках C и B. Докажите, что  $ \angle$CAB = 90o.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 86]      



Задача 55411  (#03.011)

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

Прислать комментарий     Решение

Задача 56669  (#03.012)

Тема:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8

В параллелограмме ABCD диагональ AC больше диагонали BDM — такая точка диагонали AC, что четырехугольник BCDM вписанный. Докажите, что прямая BD является общей касательной к описанным окружностям треугольников ABM и ADM.
Прислать комментарий     Решение


Задача 56670  (#03.013)

Тема:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8

Даны окружность S и точки A и B вне ее. Для каждой прямой l, проходящей через точку A и пересекающей окружность S в точках M и N, рассмотрим описанную окружность треугольника BMN. Докажите, что все эти окружности имеют общую точку, отличную от точки B.
Прислать комментарий     Решение


Задача 56671  (#03.014)

Тема:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8

Даны окружность S, точки A и B на ней и точка C хорды AB. Для каждой окружности S', касающейся хорды AB в точке C и пересекающей окружность S в точках P и Q, рассмотрим точку M пересечения прямых AB и PQ. Докажите, что положение точки M не зависит от выбора окружности S'.
Прислать комментарий     Решение


Задача 56672  (#03.015)

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности касаются в точке A. К ним проведена общая (внешняя) касательная, касающаяся окружностей в точках C и B. Докажите, что  $ \angle$CAB = 90o.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 86]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .