ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.

Вниз   Решение


В игре "Десант" две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.)

ВверхВниз   Решение


На клетчатой доске 5×5 Петя отмечает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки неперекрывающимися и не вылезающими за границу квадрата уголками из трёх клеток (уголки разрешается класть только "по клеточкам"). Какое наименьшее число клеток должен отметить Петя, чтобы Вася не смог выиграть?

ВверхВниз   Решение


Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
  а) 17 номеров;
  б) менее 16 номеров?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116008  (#5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Интерполяционный многочлен Лагранжа ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что  f(n) – Qp(n)  делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что  g(n) = f(n)  для любого целого n?

Прислать комментарий     Решение

Задача 116251  (#5)

Темы:   [ Задачи на движение ]
[ Экстремальные свойства (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 8,9

Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?

Прислать комментарий     Решение

Задача 32889  (#5)

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Теорема Пика ]
Сложность: 4
Классы: 7,8,9

Будем называть точку плоскости узлом, если обе её координаты – целые числа. Внутри некоторого треугольника с вершинами в узлах лежит ровно два узла (возможно, какие-то еще узлы лежат на его сторонах). Докажите, что прямая, проходящая через эти два узла, либо проходит через одну из вершин треугольника, либо параллельна одной из его сторон.

Прислать комментарий     Решение

Задача 116575  (#5)

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Произведения и факториалы ]
Сложность: 5-
Классы: 10,11

Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
  а) 17 номеров;
  б) менее 16 номеров?

Прислать комментарий     Решение

Задача 32895  (#5)

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Параллельный перенос ]
[ Перебор случаев ]
Сложность: 4
Классы: 8,9,10

Назовём точку на плоскости узлом, если обе её координаты целые числа. Дан треугольник с вершинами в узлах, внутри него расположено не меньше двух узлов. Докажите, что среди узлов внутри треугольника можно выбрать такие два узла, что проходящая через них прямая содержит одну из вершин треугольника или параллельна одной из сторон треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .