|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC, Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны? Верно ли, что в пространстве два угла с соответственно перпендикулярными сторонами либо равны, либо составляют в сумме 180°? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 69]
Делится ли число 2110 – 1 на 2200?
Верно ли, что в пространстве два угла с соответственно перпендикулярными сторонами либо равны, либо составляют в сумме 180°?
В клетках квадратной таблицы 10×10 стоят ненулевые цифры. В каждой строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?
Найдите наибольшее значение выражения x²y – y²x, если 0 ≤ x ≤ 1 и 0 ≤ y ≤ 1.
В клетках квадратной таблицы 5×5 расставлены числа 1 и –1. Известно, что строк с положительной суммой больше, чем с отрицательной.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 69] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|