|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.) По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток? |
Страница: << 1 2 3 >> [Всего задач: 12]
Найдите среднюю линию равнобокой трапеции, если ее диагональ равна 25, а высота равна 15.
Найдите наименьшее натуральное значение n, при котором число n! делится на 990.
Известно, что x, y и z – целые числа и xy + yz + zx = 1. Докажите, что число (1 + x²)(1 + y²)(1 + z²) является квадратом натурального числа.
В прямоугольном треугольнике АВС угол А равен 60°,
М – середина гипотенузы АВ.
По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?
Страница: << 1 2 3 >> [Всего задач: 12] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|