ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

Вниз   Решение


Правильный шестиугольник разрезан на N равновеликих параллелограммов. Доказать, что N делится на 3.

ВверхВниз   Решение


Во что перейдёт угол градусной меры α вершиной в начале координат в результате преобразования  w = z³?

ВверхВниз   Решение


Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.

ВверхВниз   Решение


Найдите длину кратчайшего пути по поверхности единичного куба между его противоположными вершинами.

ВверхВниз   Решение


Марсиане делят сутки на 13 часов. После того, как Марсовский Заяц уронил часы в чай, у них изменилась скорость вращения секундной стрелки, а скорость вращения других стрелок осталась прежней. Известно, что каждую полночь все три стрелки совпадают. Сколько всего за сутки может быть таких моментов времени, когда три стрелки совпадут?

ВверхВниз   Решение


Потроить треугольник по сторонам a, b и биссектрисе к стороне c lc.

ВверхВниз   Решение


Решить в простых числах уравнение  pqr = 7(p + q + r).

ВверхВниз   Решение


В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]      



Задача 108212  (#04.4.11.2)

Темы:   [ Касающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

Три окружности ω1, ω2 и ω3 радиуса r проходят через точку S и касаются внутренним образом окружности ω радиуса R  (R > r)  в точках T1, T2 и T3 соответственно. Докажите, что прямая T1T2 проходит через вторую (отличную от S) точку пересечения окружностей ω1 и ω2.

Прислать комментарий     Решение

Задача 110149  (#04.4.11.3)

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Процессы и операции ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4
Классы: 10,11

Автор: Храмцов Д.

Пусть многочлен  P(x) = anxn + an–1xn–1 + ... + a0  имеет хотя бы один действительный корень и  a0 ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

Прислать комментарий     Решение

Задача 110200  (#04.4.11.4)

Темы:   [ Ориентированные графы ]
[ Связность и разложение на связные компоненты ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

В некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно было добраться до любого другого. Министр транспорта и министр внутренних дел по очереди вводят на дорогах, пока есть возможность, одностороннее движение (на одной дороге за ход), причём министр, после хода которого из какого-либо города стало невозможно добраться до какого-либо другого, немедленно уходит в отставку. Первым ходит министр транспорта.
Может ли кто-либо из министров добиться отставки другого независимо от его игры?

Прислать комментарий     Решение

Задача 110161  (#04.4.11.5)

Темы:   [ Числовые таблицы и их свойства ]
[ Признаки делимости на 11 ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 9,10,11

В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

Прислать комментарий     Решение

Задача 110150  (#04.4.11.6)

Темы:   [ Десятичная система счисления ]
[ Задачи с ограничениями ]
[ Подсчет двумя способами ]
Сложность: 5-
Классы: 9,10,11

Автор: Карасев Р.

Расстоянием между числами  a1a2a3a4a5  и  b1b2b3b4b5  назовём максимальное i, для которого  aibi.  Все пятизначные числа выписаны друг за другом в некотором порядке. Какова при этом минимально возможная сумма расстояний между соседними числами?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .