|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник. а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника, площадь общей части которых не меньше 1. б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника, площадь общей части которых не меньше 1/9. В каждый угол треугольника ABC вписана окружность, касающаяся описанной окружности. Пусть A1, B1 и C1 — точки касания этих окружностей с описанной окружностью. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций? Чему равна площадь треугольника со сторонами 18, 17, 35? Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$. Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей). Даны такие натуральные числа a и b, что число a+1/b + b+1/a является целым. Докажите, что наибольший общий делитель чисел a и b не превосходит числа |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
Докажите, что для натуральных чисел k, m и n справедливо неравенство [k, m][m, n][n, k] ≥ [k, m, n]².
Функции f(x) и g(x) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через m число пар (x, y), для которых
В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше; если A учится лучше B, а тот – лучше C, то A учится лучше C.)
Докажите, что наибольший общий делитель чисел a и b не превосходит числа
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|