ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57993
Тема:    [ Гомотетичные окружности ]
Сложность: 5+
Классы: 9
В корзину
Прислать комментарий

Условие

В каждый угол треугольника ABC вписана окружность, касающаяся описанной окружности. Пусть A1, B1 и C1 — точки касания этих окружностей с описанной окружностью. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Решение

Пусть X — центр гомотетии (с положительным коэффициентом), переводящей вписанную окружность треугольника ABC в описанную окружность. Прямая AX пересекает вписанную окружность в точках A' и A'', одна из которых (для определенности A'') при указанной гомотетии переходит в точку A, а другая — в некоторую точку A2, лежащую на описанной окружности.
Рассмотрим гомотетию с центром A, переводящую A' в A2. При этой гомотетии центр вписанной окружности переходит в точку, лежащую на отрезке OA2. Это означает, что вписанная окружность переходит в окружность, касающуюся описанной окружности в точке A2. Следовательно, A2 = A1. Поэтому прямые AA1, BB1 и CC1 проходят через точку X.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 19
Название Гомотетия и поворотная гомотетия
Тема Гомотетия и поворотная гомотетия
параграф
Номер 2
Название Гомотетичные окружности
Тема Гомотетичные окружности
задача
Номер 19.014.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .