ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

Вниз   Решение


Даны две параллельные прямые. С помощью одной линейки разделите пополам отрезок, лежащий на одной из данных прямых.

ВверхВниз   Решение


В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?

ВверхВниз   Решение


Квадрат суммы цифр числа A равен сумме цифр числа A2. Найдите все такие двузначные числа A.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 21]      



Задача 105121

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8,9

Квадрат суммы цифр числа A равен сумме цифр числа A2. Найдите все такие двузначные числа A.
Прислать комментарий     Решение


Задача 105120

Темы:   [ Задачи на проценты и отношения ]
[ Объединение, пересечение и разность множеств ]
[ Обыкновенные дроби ]
Сложность: 3-
Классы: 7,8,9

На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?

Прислать комментарий     Решение

Задача 105127

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 7,8,9

Пусть a, b, c – стороны треугольника. Докажите неравенство  a³ + b³ + 3abc > c³.

Прислать комментарий     Решение

Задача 108115

Темы:   [ Вспомогательные равные треугольники ]
[ Общая касательная к двум окружностям ]
[ Пересекающиеся окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Дана окружность с диаметром AB. Другая окружность с центром в точке A пересекает отрезок AB в точке C, причём  AC < ½ AB.  Общая касательная двух окружностей касается первой окружности в точке D. Докажите, что прямая CD перпендикулярна AB.

Прислать комментарий     Решение

Задача 105129

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Найдите все целые числа x и y, удовлетворяющие уравнению  x4 – 2y² = 1.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .