|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Что больше В таблице 2n×n были выписаны всевозможные строки длины n из чисел 1 и –1. Затем часть чисел заменили нулями. Докажите, что можно выбрать несколько строк, сумма которых есть строка из нулей. (Суммой строк называется строка, элементы которой являются суммами соответствующих элементов слагаемых.) На Нью-Васюковской валютной бирже за 11 тугриков дают 14 динаров, за 22 рупии – 21 динар, за 10 рупий – 3 талера, а за 5 крон – 2 талера. Сколько тугриков можно выменять за 13 крон? На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке? |
Страница: 1 2 3 4 5 >> [Всего задач: 21]
Квадрат суммы цифр числа A равен сумме цифр числа A2. Найдите все такие двузначные числа A.
На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?
Пусть a, b, c – стороны треугольника. Докажите неравенство a³ + b³ + 3abc > c³.
Дана окружность с диаметром AB. Другая окружность с центром в точке A пересекает отрезок AB в точке C, причём AC < ½ AB. Общая касательная двух окружностей касается первой окружности в точке D. Докажите, что прямая CD перпендикулярна AB.
Найдите все целые числа x и y, удовлетворяющие уравнению x4 – 2y² = 1.
Страница: 1 2 3 4 5 >> [Всего задач: 21] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|