|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что прямые, проведенные через середины сторон вписанного четырехугольника перпендикулярно противоположным сторонам, пересекаются в одной точке. Какое наибольшее количество множителей вида В прошлом году Миша купил смартфон, который стоил целое четырёхзначное число рублей. Зайдя в магазин в этом году, он заметил, что цена смартфона выросла на 20% и при этом состоит из тех же цифр, но в обратном порядке. Какую сумму Миша потратил на смартфон? Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть
из точки x либо в точку x/31/2, либо в точку
x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
|
Страница: 1 2 >> [Всего задач: 6]
Про действительные числа a, b, c известно, что (a + b + c)c < 0. Докажите, что b² – 4ac > 0.
Найдите все такие пары натуральных чисел x, y, что числа x³ + y и y³ + x делятся на x² + y².
2n радиусов разделили круг на 2n равных секторов: n синих и n красных, чередующихся в произвольном порядке. В синие сектора, начиная с некоторого, записывают против хода часовой стрелки числа от 1 до n. В красные сектора, начиная с некоторого, записывают те же числа, но по ходу часовой стрелки. Докажите, что найдётся полукруг, в котором записаны все числа от 1 до n.
Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть
из точки x либо в точку x/31/2, либо в точку
x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|