ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Горяшин Д.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 65683

Темы:   [ Обратные тригонометрические функции ]
[ Неравенство Коши ]
Сложность: 3
Классы: 9,10,11

Существует ли такое значение x, что выполняется равенство  arcsin2x + arccos2x = 1?

Прислать комментарий     Решение

Задача 66596

Темы:   [ Тригонометрия (прочее) ]
[ Функции. Непрерывность (прочее) ]
Сложность: 3
Классы: 10,11

Существует ли функция $f$, определенная на отрезке $[-1;1]$, которая при всех действительных $x$ удовлетворяет равенству $$ 2f(\cos x)=f(\sin x)+\sin x?$$
Прислать комментарий     Решение


Задача 67033

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9,10,11

Некоторые неотрицательные числа $a$, $b$, $c$ удовлетворяют равенству $a+b+c=2\sqrt{abc}$. Докажите, что $bc\geqslant b+c$.
Прислать комментарий     Решение


Задача 67321

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Функции. Непрерывность (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существует ли на координатной плоскости точка, относительно которой симметричен график функции $f(x)=\frac{1}{2^x+1}$?
Прислать комментарий     Решение


Задача 64720

Темы:   [ Арифметическая прогрессия ]
[ Тригонометрический круг ]
[ Тригонометрические уравнения ]
Сложность: 3+
Классы: 10,11

Найдите все значения a, для которых найдутся такие x, y и z, что числа cos x, cos y и cos z попарно различны и образуют в указанном порядке арифметическую прогрессию, при этом числа  cos(x + a),  cos(y + a)  и  cos(z + a)  также образуют в указанном порядке арифметическую прогрессию.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .