ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В числовом наборе 100 чисел. Если выкинуть одно число, то медиана оставшихся чисел будет равна 78. Если выкинуть другое число, то медиана оставшихся чисел будет 66. Найдите медиану всего набора.

Вниз   Решение


В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за одного и того же кандидата из числа оставшихся.
На очередных выборах баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре k-е место по числу голосов. Определите наибольшее возможное значение k, если Остап Бендер был избран
а) в 1002-м туре;
б) в 1001-м туре.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 79525

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что при простых  p > 7  число  p4 − 1  делится на 240.

Прислать комментарий     Решение

Задача 79529

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

Над строкой из четырёх чисел 1, 9, 8, 8 проделаем следующую операцию: между каждыми двумя соседними числами впишем число, которое получится в результате вычитания левого числа из правого. Над новой строкой проделаем ту же операцию и т.д. Найдите сумму чисел строки, которая получится после ста таких операций.
Прислать комментарий     Решение


Задача 79534

Темы:   [ Арифметика остатков (прочее) ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10

Докажите, что при простых  pi ≥ 5,  i = 1, 2, ..., 24,  число    делится нацело на 24.

Прислать комментарий     Решение

Задача 79536

Темы:   [ Уравнения в целых числах ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3+
Классы: 8,9,10

Пусть x и y – натуральные числа. Рассмотрим функцию  f(x, y) = ½ (x + y – 1)(x + y – 2) + y.  Докажите, что множеством значений этой функции являются все натуральные числа, причём для любого натурального  i = f(x, y)  числа x и y определяются однозначно.

Прислать комментарий     Решение

Задача 79535

Темы:   [ Необычные построения (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 10,11

На плоскости даны две перпендикулярные прямые. С помощью кронциркуля укажите на плоскости три точки, являющиеся вершинами равностороннего треугольника. Кронциркуль — это инструмент, похожий на циркуль, но на концах у него две иголки. Он позволяет переносить одинаковые расстояния, но не позволяет рисовать (процарапывать) окружности, дуги окружностей и делать засечки.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .