ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Буквы русского алфавита занумерованы в соответствии с таблицей: $ \begin{array}{cccccccccccccccccccccc} А & Б & В & Г & Д & Е & Ж & З & И & К & ... & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & ... & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \end{array} $ Для зашифрования сообщения, состоящего из n букв, выбирается ключ K - некоторая последовательность из n букв приведенного выше алфавита. Зашифрование каждой буквы сообщения состоит в сложении ее номера в таблице с номером соответствующей буквы ключевой последовательности и замене полученной суммы на букву алфавита, номер которой имеет тот же остаток от деления на 30, что и эта сумма. Прочтите шифрованное сообщение: РБЬНПТСИТСРРЕЗОХ, если известно, что шифрующая последовательность не содержала никаких букв, кроме А, Б и В. (Задача с сайта www.cryptography.ru.)

Вниз   Решение


Число x оканчивается на 5. Доказать, что x² оканчивается на 25.

ВверхВниз   Решение


Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
  а) 17 номеров;
  б) менее 16 номеров?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57257

Тема:   [ Окружность Аполлония ]
Сложность: 4
Классы: 9

Постройте треугольник по a, ha и b/c.
Прислать комментарий     Решение


Задача 57258

Тема:   [ Окружность Аполлония ]
Сложность: 4
Классы: 9

Постройте треугольник ABC, если известны длина биссектрисы CD и длины отрезков AD и BD, на которые она делит сторону AB.
Прислать комментарий     Решение


Задача 57259

Темы:   [ Окружность Аполлония ]
[ Отношение, в котором биссектриса делит сторону ]
[ Метод ГМТ ]
[ Построения (прочее) ]
Сложность: 5
Классы: 8,9

На прямой даны четыре точки A, B, C, D в указанном порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под равными углами.
Прислать комментарий     Решение


Задача 57260

Тема:   [ Окружность Аполлония ]
Сложность: 5
Классы: 9

На плоскости даны два отрезка AB и A'B'. Постройте точку O так, чтобы треугольники AOB и A'OB' были подобны (одинаковые буквы обозначают соответственные вершины подобных треугольников).
Прислать комментарий     Решение


Задача 57261

Тема:   [ Окружность Аполлония ]
Сложность: 5
Классы: 9

Точки A и B лежат на диаметре данной окружности. Проведите через них две равные хорды с общим концом.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .