ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 58296

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 8,9

Существует ли треугольник, у которого все высоты меньше 1 см, а площадь больше 1  м2?

Решение

Рассмотрим прямоугольник ABCD со сторонами AB = 1 см и BC = 500 м. Пусть O — точка пересечения его диагоналей. Легко проверить, что площадь треугольника AOD больше 1  м2, а все его высоты меньше 1 см.


Прислать комментарий


Задача 58297

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 8,9

В выпуклом четырехугольнике ABCD равны стороны AB и CD и углы A и C. Обязательно ли этот четырехугольник параллелограмм?

Решение

Нет, не обязательно. На рис. показано, как получить нужный четырехугольник ABCD.


Прислать комментарий

Задача 58306

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?

Подсказка

Для каждой пары прожекторов на арене должна найтись область, освещённая в точности этими двумя прожекторами.

Решение

Впишем в арену правильный k-угольник, где  k = ½ n(n – 1)  – число различных пар, которые можно составить из n прожекторов. Тогда можно установить взаимно однозначное соответствие между сегментами, отсекаемыми сторонами k-угольника, и парами прожекторов. Пусть каждый прожектор освещает весь k-угольник и сегменты, соответствующие парам прожекторов, в которые он входит. Легко проверить, что это освещение обладает требуемыми свойствами.

Ответ

При любом  n ≥ 2.

Прислать комментарий

Задача 58298

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4+
Классы: 8,9

Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?

Решение

Не обязательно. Легко проверить, что список длин сторон и диагоналей для равнобедренной трапеции с высотой 1 и основаниями 2 и 4 совпадает с таким же списком для четырехугольника с перпендикулярными диагоналями длиной 2 и 4, делящимися точкой пересечения на отрезки длиной 1 и 1, 1 и 3 (рис.).


Прислать комментарий

Задача 58299

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9

Пусть n$ \ge$3. Существуют ли n точек, не лежащих на одной прямой, попарные расстояния между которыми иррациональны, а площади всех треугольников с вершинами в них рациональны?

Решение

Да, существуют. Рассмотрим точки Pi = (i, i2), где i = 1,..., n. Площади всех треугольников с вершинами в узлах целочисленной решетки рациональны (см. задачу 24.5), а числа PiPj = | i - j|$ \sqrt{1+(i+j)^2}$ иррациональны.
Прислать комментарий


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .