ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Канель-Белов А.Я.

Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 99]      



Задача 65409

Темы:   [ Свойства симметрий и осей симметрии ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
[ Произвольные многоугольники ]
Сложность: 4
Классы: 9,10,11

Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол A – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины A вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

Прислать комментарий     Решение

Задача 86110

Темы:   [ НОД и НОК. Взаимная простота ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9

На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки  n – 1  цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа.

Прислать комментарий     Решение

Задача 98202

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Выпуклые многоугольники ]
[ Средние величины ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
[ Формула Эйлера. Эйлерова характеристика ]
Сложность: 4
Классы: 8,9,10

Выпуклый 1993-угольник разрезан на выпуклые семиугольники.
Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.
(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)

Прислать комментарий     Решение

Задача 98258

Темы:   [ Наглядная геометрия в пространстве ]
[ Прямоугольные параллелепипеды ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9

Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)

 
Прислать комментарий     Решение

Задача 98269

Темы:   [ Наглядная геометрия в пространстве ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 10,11

Существует ли такой невыпуклый многогранник, что из некоторой точки М, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)

 
Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .