ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Канель-Белов А.Я.

Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 99]      



Задача 111042

Темы:   [ Описанные четырехугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 9,10,11

Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда  |PQ| = |QR|.

Прислать комментарий     Решение

Задача 115500

Темы:   [ Классические неравенства (прочее) ]
[ Средние величины ]
Сложность: 4-
Классы: 8,9,10

У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются товарищами, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?

Прислать комментарий     Решение

Задача 116909

Темы:   [ Пятиугольники ]
[ Перегруппировка площадей ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9,10

В выпуклом пятиугольнике P провели все диагонали, в результате чего он оказался разбитым на десять треугольников и один пятиугольник P'. Из суммы площадей треугольников, прилегающих к сторонам P, вычли площадь P'; получилось число N. Совершив те же операции с пятиугольником P', получили число N'. Докажите, что  N > N'.

Прислать комментарий     Решение

Задача 64925

Темы:   [ Куб ]
[ Центр масс ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.

Прислать комментарий     Решение

Задача 65408

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
[ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Первоначально на доске написано число 2004!. Два игрока ходят по очереди. Игрок в свой ход вычитает из написанного числа какое-нибудь натуральное число, которое делится не более чем на 20 различных простых чисел (так, чтобы разность была неотрицательна), записывает на доске эту разность, а старое число стирает. Выигрывает тот, кто получит 0. Кто из играющих – начинающий или его соперник – может гарантировать себе победу, и как ему следует играть?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .