ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Френкин Б.Р.

Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 181]      



Задача 66696

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10

Даны четыре натуральных числа. Каждое из данных чисел делится на наибольший общий делитель остальных трёх. Наименьшее общее кратное каждых трёх из данных чисел делится на оставшееся четвёртое. Докажите, что произведение данных чисел – точный квадрат.

Прислать комментарий     Решение

Задача 66700

Тема:   [ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10,11

В строку выписаны 39 чисел, не равных нулю. Сумма каждых двух соседних чисел положительна, а сумма всех чисел отрицательна.
Каков знак произведения всех чисел?

Прислать комментарий     Решение

Задача 66762

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 6,7,8

Петя написал стозначное число $X$, в записи которого нет нулей. Пятидесятизначное число, образованное первыми пятьюдесятью цифрами числа $X$, Петя назвал головой числа $X$. Оказалось, что число $X$ без остатка делится на свою голову. Сколько нулей в записи частного?
Прислать комментарий     Решение


Задача 66866

Тема:   [ Таблицы и турниры (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Группа из восьми теннисистов раз в год разыгрывала кубок по олимпийской системе (игроки по жребию делятся на 4 пары; выигравшие делятся по жребию на две пары, играющие в полуфинале; их победители играют финальную партию). Через несколько лет оказалось, что каждый с каждым сыграл ровно один раз. Докажите, что
а) каждый побывал в полуфинале более одного раза;
б) каждый побывал в финале.
Прислать комментарий     Решение


Задача 66870

Тема:   [ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .