ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Френкин Б.Р.

Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 172]      



Задача 66882

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Даны $n$ натуральных чисел. Боря для каждой пары этих чисел записал на чёрную доску их среднее арифметическое, а на белую доску — их среднее геометрическое, и для каждой пары хотя бы одно из этих двух средних было целым. Докажите, что хотя бы на одной из досок все числа целые.
Прислать комментарий     Решение


Задача 66889

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10,11

Может ли произведение каких-то 9 последовательных натуральных чисел равняться сумме (может быть, других) 9 последовательных натуральных чисел?
Прислать комментарий     Решение


Задача 67043

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10,11

Натуральное число $k$ назовём интересным, если произведение первых $k$ простых чисел делится на $k$ (например, произведение первых двух простых чисел — это 2·3=6, и 2 — число интересное). Какое наибольшее количество интересных чисел может идти подряд?
Прислать комментарий     Решение


Задача 67064

Темы:   [ Теорема Виета ]
[ Многочлен n-й степени имеет не более n корней ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Многочлен третьей степени имеет три различных корня строго между 0 и 1. Учитель сообщил ученикам два из этих корней. Ещё он сообщил все четыре коэффициента многочлена, но не указал, в каком порядке эти коэффициенты идут. Обязательно ли можно восстановить третий корень?
Прислать комментарий     Решение


Задача 67064

Темы:   [ Теорема Виета ]
[ Многочлен n-й степени имеет не более n корней ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Многочлен третьей степени имеет три различных корня строго между 0 и 1. Учитель сообщил ученикам два из этих корней. Ещё он сообщил все четыре коэффициента многочлена, но не указал, в каком порядке эти коэффициенты идут. Обязательно ли можно восстановить третий корень?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .