ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На катете AC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K.
Найдите CK, если  AC = 2  и  ∠A = 30°.

Вниз   Решение


Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



Задача 67426

Темы:   [ Пирамида (прочее) ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Верно ли, что сумма внутренних двугранных углов при основании треугольной пирамиды всегда меньше суммы внешних?
Прислать комментарий     Решение


Задача 79455

Темы:   [ Пирамида (прочее) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 10

Боковые рёбра треугольной пирамиды имеют одинаковую длину, а боковые грани — одинаковую площадь. Докажите, что основание этой пирамиды — равнобедренный треугольник.
Прислать комментарий     Решение


Задача 87331

Темы:   [ Пирамида (прочее) ]
[ Ортоцентрический тетраэдр ]
Сложность: 3
Классы: 10,11

Верно ли, что высоты любого тетраэдра пересекаются в одной точке?
Прислать комментарий     Решение


Задача 110269

Темы:   [ Пирамида (прочее) ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Докажите, что если боковые рёбра пирамиды образуют с плоскостью основания равные углы, то в основании лежит вписанный многоугольник, а высота пирамиды проходит через центр описанной окружности этого многоугольника.
Прислать комментарий     Решение


Задача 110272

Темы:   [ Пирамида (прочее) ]
[ Двугранный угол ]
[ Описанные четырехугольники ]
Сложность: 3
Классы: 10,11

Три последовательные стороны основания четырёхугольной пирамиды равны 5, 7 и 8. Найдите четвёртую сторону основания, если известно, что двугранные углы при основании равны.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .