ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 109]      



Задача 54695

Темы:   [ Углы между биссектрисами ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Точка O — центр окружности, вписанной в треугольник ABC. Известно, что BC = a, AC = b, $ \angle$AOB = 120o. Найдите сторону AB.

Прислать комментарий     Решение


Задача 108489

Темы:   [ Углы между биссектрисами ]
[ Теорема синусов ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC биссектрисы пересекаются в точке O. Прямая AO пересекается с окружностью, описанной около треугольника OBC, в точках O и M. Найдите OM, если BC = 2, а угол A равен 30o.

Прислать комментарий     Решение


Задача 108513

Темы:   [ Углы между биссектрисами ]
[ Теорема косинусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол при вершине B равен $ {\frac{\pi}{3}}$, а отрезки, соединяющие центр вписанной окружности с вершинами A и C, равны 4 и 6 соответственно. Найдите радиус окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 108514

Темы:   [ Углы между биссектрисами ]
[ Теорема косинусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол при вершине B равен $ {\frac{\pi}{2}}$, а отрезки, соединяющие центр вписанной окружности с вершинами A и C, равны 3 и $ \sqrt{2}$ соответственно. Найдите радиус окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 53393

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Свойства биссектрис, конкуррентность ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC с углом A, равным 120°, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  ∠A1C1O = 30°.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .