ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 500]      



Задача 35216

Темы:   [ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9,10

В окружность вписан выпуклый шестиугольник ABCDEF.
  а) Известно, что диагонали AD, BE, CF пересекаются в одной точке. Докажите, что  AB·CD·EF = BC·DE·FA.
  б) Известно, что  AB·CD·EF = BC·DE·FA.  Докажите, что диагонали AD, BE, CF пересекаются в одной точке.

Прислать комментарий     Решение

Задача 53896

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Через точку пересечения биссектрисы угла A треугольника ABC и отрезка, соединяющего основания двух других биссектрис, проведена прямая, параллельная стороне BC. Докажите, что меньшее основание образовавшейся трапеции равно полусумме её боковых сторон.

Прислать комментарий     Решение

Задача 64813

Темы:   [ Вспомогательные подобные треугольники ]
[ Точка Лемуана ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4
Классы: 9,10,11

Даны окружность, её хорда AB и середина W меньшей дуги AB. На большей дуге AB выбирается произвольная точка C. Касательная к окружности, проведённая из точки C, пересекает касательные, проведённые из точек A и B, в точках X и Y соответственно. Прямые WX и WY пересекают прямую AB в точках N и M соответственно. Докажите, что длина отрезка NM не зависит от выбора точки C.

Прислать комментарий     Решение

Задача 108041

Темы:   [ Вспомогательные подобные треугольники ]
[ Перегруппировка площадей ]
Сложность: 4
Классы: 8,9

Автор: Савин А.П.

Если повернуть квадрат вокруг его центра на 45°, то стороны повёрнутого квадрата разобьют каждую сторону первоначального отрезка на три отрезка, длины которых относятся как  a : b : a  (эти отношения легко вычислить). Для произвольного выпуклого четырёхугольника сделаем аналогичное построение: разобьём каждую его сторону в тех же отношениях  a : b : a  и проведём прямую через каждые две точки деления, соседние с вершиной (лежащие на сходящейся к ней стороне). Докажите, что площадь четырёхугольника, ограниченного четырьмя построенными прямыми, равна площади исходного четырёхугольника.

Прислать комментарий     Решение

Задача 108147

Темы:   [ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Ортоцентр и ортотреугольник ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

В остроугольном неравнобедренном треугольнике ABC биссектриса угла между высотами AA1 и CC1 пересекает стороны AB и BC в точках P и Q соответственно. Биссектриса угла B пересекает отрезок, соединяющий ортоцентр H треугольника ABC с серединой M стороны AC в точке R. Докажите, что точки P, B, Q и R лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 500]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .