Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 545]
|
|
|
Сложность: 3 Классы: 9,10,11
|
Волейбольный чемпионат с участием 16 команд проходил в один круг (каждая команда играла с каждой ровно один раз, ничьих в волейболе не бывает). Оказалось, что какие-то две команды одержали одинаковое число побед. Докажите, что найдутся три команды, которые выиграли друг у друга по кругу (то есть $A$ выиграла у $B$, $B$ выиграла у $C$, а $C$ выиграла у $A$).
|
|
|
Сложность: 3 Классы: 6,7,8,9
|
Можно ли расставить в клетках таблицы $6\times 6$ числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике $1\times 5$ (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023?
|
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
В каждую клетку доски $8\times 8$ вписано натуральное число так, что выполнено условие: если из одной клетки в другую можно перейти одним ходом коня, то отношение чисел в этих двух клетках является простым числом. Могло ли оказаться, что в какую-то клетку вписано число $5$, а в какую-то другую – число $6$?
|
|
|
Сложность: 3 Классы: 8,9,10,11
|
Можно ли на бесконечной клетчатой плоскости расставить бесконечное количество шахматных коней (не более одного коня в клетку) так, чтобы каждый конь бил ровно 6 других?
|
|
|
Сложность: 3 Классы: 8,9,10
|
В таблицу n×n записаны n² чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 545]