ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 74]      



Задача 76475

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Число e ]
[ Произведения и факториалы ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Что больше: 300! или 100300?

Прислать комментарий     Решение

Задача 61115

 [Формула Эйлера]
Темы:   [ Комплексная экспонента ]
[ Число e ]
[ Предел функции ]
Сложность: 4+
Классы: 10,11

Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством     Докажите формулу Эйлера:   ea+ib = ea(cos b + i sin b).

Прислать комментарий     Решение

Задача 61337

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
[ Производная и касательная ]
Сложность: 4+
Классы: 10,11

Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

Прислать комментарий     Решение

Задача 61486

Темы:   [ Квадратные корни (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 4+
Классы: 10,11

Пусть (1 + $ \sqrt{2}$ + $ \sqrt{3}$)n = pn + qn$ \sqrt{2}$ + rn$ \sqrt{3}$ + sn$ \sqrt{6}$ (n $ \geqslant$ 0). Найдите:

а) $ \lim\limits_{n\to
\infty}^{}$$ {\dfrac{p_n}{q_n}}$;     б) $ \lim\limits_{n\to
\infty}^{}$$ {\dfrac{p_n}{r_n}}$;     в) $ \lim\limits_{n\to
\infty}^{}$$ {\dfrac{p_n}{s_n}}$.

Прислать комментарий     Решение

Задача 97976

Темы:   [ Периодичность и непериодичность ]
[ Предел последовательности, сходимость ]
Сложность: 5-
Классы: 9,10,11

Рассматривается последовательность слов, состоящих из букв "A" и "B". Первое слово в последовательности – "A", k-е слово получается из (k–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...
  а) На каком месте в этой последовательности встретится 1000-я буква "A"?
  б) Докажите, что эта последовательность – непериодическая.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .